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Quantum Electrical Circuits

2.1 Introduction

Quantum electrodynamics is the theory of interaction between electrons (and atoms)
with electromagnetic fields. These lecture notes discuss the closely related problem of
quantization of electrical circuits (Devoret, 1997; Schoelkopf and Girvin, 2008). Exper-
imental progress over the last decade in creating and controlling quantum coherence
in superconducting electrical circuits has been truly remarkable. The quantum elec-
trodynamics of superconducting microwave circuits has been dubbed ‘circuit QED’
by analogy to cavity QED in quantum optics. These lecture notes will describe the
quantum optics approach to microwave circuits with superconducting qubits playing
the role of artificial atoms whose properties can be engineered. Despite being large
enough to be visible to the naked eye, these artificial atoms have a very simple dis-
crete set of quantized energy levels which are nearly as well understood (Nigg et al.,
2012) as those of the prototypical single-electron atom, hydrogen. Furthermore it has
proven possible to put these atoms into coherent superpositions of different quantum
states so that they can act as quantum bits. Through clever engineering, the coherence
times of such superposition states has risen more than four orders of magnitude from
nanoseconds for the first superconducting qubit created in 1999 (Nakamura et al.,
1999) up to ~ 30 — 150 microseconds today (Paik et al., 2011; Rigetti et al., 2012;
Chang et al., 2013; Barends et al., ). Recent experiments with the fluxonium qubit
design (Manucharyan et al., 2009b) have achieved 77 times exceeding 1 millisecond
(Geerlings et al., 2013). ‘Schoelkopf’s Law’ for the exponential growth of coherence
time is illustrated in Fig. (2.1).

Simple quantum machines have already been built using superconducting circuits
which can manipulate and measure the states of individual qubits (Nakamura et al.,
1999; Mooij et al., 1999; Vion et al., 2002) as well as individual microwave quanta
(Houck et al., 2007; Hotheinz et al., 2008; Hofheinz et al., 2009; Johnson et al., 2010;
Mariantoni et al., 2011a; Wang et al., 2011), entangle two (Ansmann et al., 2009; Chow
et al., 2010) and three qubits (Neeley et al., 2010; DiCarlo et al., 2010), run simple
quantum algorithms (DiCarlo et al., 2009; Mariantoni et al., 2011b) and perform rudi-
mentary quantum error correction (Reed et al., 2012). Future improved qubit designs,
microwave circuit designs, and materials improvements should allow this trend to con-
tinue unabated. In addition to being a potentially powerful engineering architecture
for building a quantum computer, circuit QED opens up for us a novel new regime to
study ultra-strong coupling between ‘atoms’ and individual microwave photons (De-
voret et al., 2007). The concept of the photon is a subtle one, but hopefully these notes
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Fig. 2.1 “Schoelkopf’s Law” plot illustrating the exponential growth for superconducting
(charge-) qubit coherence times. Recent experiments (Geerlings et al., 2013) with the ‘fluxo-
nium’ qubit design have achieved T} times exceeding one millisecond.

will convince the reader that microwaves, despite their name, really are particles. We
will accordingly begin our study with a review of the quantization of electromagnetic
fields in circuits and cavities.

The quantization of electrical circuits has been thoroughly addressed in the Les
Houches lecture notes of my colleague, Michel Devoret (Devoret, 1997), to which I
direct the interested reader. The circuit elements that are available to the quantum
engineer include those familiar to classical engineers: resistors, capacitors, and induc-
tors. Resistors cause unwanted dissipation and we will attempt to avoid them. See
however further discussion in the Appendix (B) of spontaneous emission into trans-
mission lines which act effectively as fixed impedances. Dissipation into a cold resistor
can in fact be useful for qubit reset(Reed et al., 20100) to the ground state since reset
requires removal of entropy to a cold bath.

In addition to these standard circuit elements, there is one special element in su-
perconducting circuits, the Josephson tunnel junction. We will be learning more about
superconductivity and Josephson junctions later, but for now we simply note the fol-
lowing. With capacitors and inductors we can build simple LC harmonic oscillators.
If we can eliminate all resistors then the harmonic oscillations will be undamped. The
use of superconducting circuits takes us a long way towards this goal of zero dissipa-
tion, about which more later. The essential feature of (ordinary) superconductivity is
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that electrons of opposite spin pair up and condense into a special ground state with
a substantial excitation gap 2A needed to break one of the pairs and create an excited
state. This pair excitation gap is essential to the ability of current to flow in a super-
conductor without dissipation.! A closely related advantage of the excitation gap is
that it dramatically reduces the number of effective degrees of freedom in the circuit,
allowing us to construct artificial ‘atoms’ that behave like simple single-electron atoms
even though they are made up of 10° — 10'2 aluminum atoms. The extremely power-
ful force of the Coulomb interactions also plays an essential role in limiting the low
energy degrees of freedom in circuits. When the Coulomb interaction is unscreened,
the gapless collective motion of currents is lifted up to the plasma frequency which is
orders of magnitude higher than any relevant frequency scale for the circuits we will
consider. (This effect of the long-range Coulomb force occurs in both normal metals
and superconductors.) In the presence of screening due to ground planes or shields, the
plasma oscillations are ‘acoustic modes’ with a linear dispersion and velocity close to
the speed of light in vacuum.? When quantized, these will be our propagating photons.

2.2 Plasma Oscillations

Because the powerful effect of long-range Coulomb interactions plays a crucial role in
simplifying the spectrum of quantum electrical circuits, let us begin our analysis by
reviewing the plasma oscillations in a bulk metal. Throughout this work we will use SI
units. We will consider infinitesimal density fluctuations on around the mean electron
number density n. In the ‘jellium’ model the mean charge density is canceled by the
ionic background so the net charge density is

p(F) = —edn. (2.1)

The current flowing (to zeroth order in on) is

-

J(7,t) = —end(7,t), (2.2)
where the local electron mean velocity field obeys Newton’s law

0., —e=

where m is the electron (effective) mass. This in turn yields

0 - ne?x

Taking the divergence of both sides of this equation and applying Gauss’s law

IThere do exist gapless superconductors (e.g. d-wave materials like YBCO) which can carry a dc
current without dissipation, but at the microwave frequencies of interest for qubits, the lack of a gap
implies significant dissipation.

2Flat metallic surfaces and long wires exhibit so-called surface plasmons which are gapless and
have approximately linear dispersion relations due to electrodynamic retardation effects. The purpose
of the ground shield surrounding the central wire in a coaxial cable is to prevent radiation losses when
the cable is bent into a curve.
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V.E= %, (2.5)
and the continuity equation
- - 0
V-J+ &p =V, (2 6)
yields
0? 9
92” Wpp (2.7)
3

(2.8)

Flectromagnetic waves cannot propagate in a plasma at frequencies below the plasma
frequency (Jackson, 1999). In the earth’s ionosphere, the typical plasma frequency
is in the range of 10’s of MHz and varies between night and day, thereby affecting
short-wave radio reception. In the typical metals we will be concerned with (e.g.,
aluminum), the valence electron density is sufficiently high that the plasma frequency
is in the ultraviolet region of the optical spectrum. Hence aluminum (whose plasma
frequency wy,/(27) ~ 3.6 x 101°Hz corresponds to a photon energy of ~ 15 eV) is highly
reflective in the visible. Essentially, the electrons are so dense and so agile that they
screen out any electric fields almost perfectly over a very short screening distance. For
frequencies far below the plasma frequency, Maxwell’s equations yield

VxVxEr~-A\2E, (2.9)

where the London penetration depth, Ar,, of the electromagnetic fields is

c 1
AL = — = —, 2.10
b wp  VAmnre ( )

where the classical radius of the electron is given by

1 o ogi8x 10715 (2.11)
Te = — =~ 2. m. .
4meq mc?

For Al, Eq. 2.10 yields? A\, ~ 14nm We will be dealing with GHz frequency scales
many orders of magnitude below the plasma frequency and centimeter wavelength
scales relative to which the penetration depth is effectively zero.

3We neglect here the various details of the band structure of Al as well as the possibility that the
core electrons in the atoms of the metal contribute a dielectric constant ¢ # 1 seen by the valence
electrons whose dynamics create the plasma oscillations of the metal.

4The measured value of the London penetration depth in Al (at zero frequency) is somewhat
larger, A1, ~ 51.5nm. The difference is presumably due to variation in the core electron dielectric
constant with frequency which has been neglected in our model. It should also be noted that in dirty
superconductors, the reduction in the superfluid stiffness causes the penetration depth to increase.
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Exercise 2.1 Derive Eq. 2.9 in the limit of low frequencies and show that it leads to expo-
nential decay of transverse electromagnetic waves with decay length Ap.

The above simplified® jellium model yields a plasma mode which is completely
dispersionless—the mode frequency is independent of wave vector ¢q. The frequency of
the bulk collective plasma mode is vastly higher than any microwave frequency that
we will be dealing with. From the point of view of quantum mechanics, the amount
of energy required to create a bulk plasmon is so large that we can consider these
degrees of freedom to be frozen into their quantum mechanical ground state. Hence
they can be ignored. The approximations leading to Eq. (2.2) breakdown at short
distances due to the granularity of the electron charge. At very large wave vectors
approaching the Fermi wave vector, the jellium continuous charge picture breaks down
and the plasma oscillation frequency rises and the mode becomes ‘Landau-damped’
due to the collective charge oscillation mode decaying into single-particle excitations
(Pines, 1963). Conversely for extremely small wave vectors, there is a cutoff associated
with the finite size of any sample. This we can take into account by considering the
capacitance matrix between different lumps of metal in the circuit we are trying to
quantize. In certain circumstances, the capacitance matrix is such that there do exist
collective charge oscillation modes which are down in the microwave range. These will
be the important modes which we will quantize. Here the superconductivity is vital
for gapping the single-particle excitations so that the collective charge modes are both
simple and extremely weakly damped.

2.3 Quantum LC Oscillator

The circuit element with the simplest dynamics is the LC oscillator illustrated schemat-
ically in Fig. (2.2a). Now that we understand that supercurrents can flow essentially
without dissipation and that the great strength of the Coulomb interaction lifts den-
sity fluctuations up to optical frequencies, we can understand that the LC oscillator
has, to a very good approximation, only a single low-energy degree of freedom, namely
uniform divergenceless current flow in the wire of the inductor which does not build
up charge anywhere except on the plates of the capacitor. This is a very good approx-
imation in the ‘lumped element’ limit where the physical size of the LC oscillator is
much smaller than than the wavelength of electromagnetic waves at the frequency of
the oscillator, A\ = 2w¢/Q. [This caveat is associated with the unstated assumption
in our discussion of plasma oscillations that we neglected electrodynamic retardation
effects. That is, we effectively assumed ¢ = co.] In terms of the capacitor charge ¢ and
the inductor current I the Lagrangian is readily written

14%
20"

Using charge conservation, I = +¢, this can be cast into the more familiar form

L= %LIQ - (2.12)

5A more careful treatment would have included the change in the Fermi energy as the density
oscillates. The resulting Fermi pressure gradients produce a positive quadratic dispersion of the plasma
mode with increasing wave vector.
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L=2¢-—=¢ (2.13)

Remarkably, we have reduced a complex circuit containing an enormous number of
electrons to a system with a single degree of freedom ¢ with ‘mass’ L and ‘spring
constant’ 1/C). This is possible only because all but this one degree of freedom are
effectively gapped out by a combination of superconductivity (which gaps out the
single-particle excitations) and the long-range Coulomb force (which gaps out the
collective plasmon (density fluctuation) degrees of freedom). All that is left is the rigid
collective motion of the incompressible electron fluid sloshing back and forth, charging
and discharging the capacitor.
Eq. (2.13) yields the Euler-Lagrange equation of motion

i— 0%, (2.14)

where the natural oscillation frequency is
Q= —. (2.15)

The momentum conjugate to the charge is the flux through the inductor

5L
d=2% _1i—1LI 2.1
5g ~ L (2.16)

Thus the Hamiltonian can be written

H = ® £—¢2+ L p (2.17)
B YA Tk '
Hamilton’s equations of motion then give the current through the inductor and the

voltage at the node connecting the inductor and the capacitor

. O0H &

q_a_@_f_j (2.18)

. 0H q

b 9H a4 _, 2.1
94 o=V (2.19)

In the usual way, the coordinate and its conjugate momentum can be promoted to
quantum operators obeying the canonical commutation relation

[®,q] = —ih (2.20)
and we can write the Hamiltonian
hQ 1
H= 7{aTahLzmT} = hQ {a*a+§}, (2.21)

in terms of raising and lowering operators
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Fig. 2.2 Simple LC electrical oscillator analogous to a mass and spring mechanical oscillator.
In panel a) the position coordinate of the mass is taken to be q, the charge accumulated on the
capacitor by the current I flowing through the inductor, and the flux ® through the inductor
is the momentum. The sign convention for the charge is such that ¢ = I and therefore the
inductance L is analogous to the mass. The role of the spring constant is played by 1/C
and the potential energy of the capacitor is (¢ — q)?/2C, where qo is the offset charge of
the capacitor (the equivalent of the equilibrium length of the spring). Hamilton’s equation
for the time rate of change of the momentum is ® = —(g — ¢o)/C. In panel b) the position
coordinate is now taken to be ¢, the time integral of the voltage V across the capacitor
(i.e., the node flux) and the conjugate momentum is @, the charge on the capacitor resulting
from the electrochemical potential difference between the two plates. The role of the mass is
played by C and the spring constant is now 1/L, with the energy of the inductor given by
(¢ — ¢0)? /2L, where ¢y is the external flux in the loop of the circuit (including the coil of the
inductor). Hamilton’s equation for the time rate of change of position is 6=Q /C'. Note the
important sign change in the denition of charge: Q = qo — ¢, needed to make the Hamilton
equations of motion correct in each case. The classical Poisson brackets and the quantum
canonical commutation relations between position and momentum are maintained between
the two cases: [, ®] = [, Q] = +ih.

1 - 1

a =+ d + ] 2.22
V2LhQ \/QCth ( )
. 1 . 1
o' = —i b+ ] 2.23
VaLiQ | v2CR" (2.23)
which obey the usual relation
[a,al] = 1. (2.24)

In the above discussion we chose the charge ¢ on the capacitor as the natural
coordinate of the harmonic oscillator and found that the inductor flux ® was the
momentum conjugate to this flux. In the picture we interpret the capacitance C as the
inverse of the ‘spring constant,” and the inductance L as the ‘mass.” This seems natural
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from our intuitive view of the capacitance as storing the potential energy and the
inductor storing the kinetic energy (actually the kinetic energy of the electrons makes
only a small contribution (called the ‘kinetic inductance’) to the total inductance.
It is primarily the energy stored in the magnetic field created by the current which
dominates the inductance in most situations.)

When dealing with Josephson junctions we will start with this same representation
but then find that they act as non-linear inductors and so it will be more convenient
to take the node flux (defined below) to be the coordinate rather than the momentum.
In order to get used to this alternative representation, we will practice here on the LC
oscillator. Following Devoret (Devoret, 1997) let us define the node flux at the point
shown in Fig. (2.2b) by

t
o(t) = / drV(r), (2.25)
so that V(t) = ¢. Then the potential energy stored on the capacitor is
1.
U= 50452 (2.26)

and now looks like the kinetic energy with this choice of coordinate. Similarly, us-
ing Faraday’s law and the sign convention for the direction of the current defined in
Fig. (2.2b) we have

V=LI=¢ (2.27)
and thus see that the node flux variable ¢ really is the physical magnetic flux ® winding
through the inductor (ignoring any possible external flux applied through the loop of
the circuit or the inductor). Hence the kinetic energy stored in the inductor is

1
[ = —a@> 2.2
2L¢’ (2.28)

which now looks like the potential energy. With this choice of coordinate the La-
grangian becomes

1., 1,
=04 - — 2.2
L 20(]5 2L¢ , (2.29)
and the momentum conjugate to the flux
oL :
=—==C 2.30
Q 5 ¢ (2.30)

is now the charge as defined with the sign convention in Fig. (2.2b). Notice the crucial
minus sign relative to the previous result. This is necessary to maintain the sign of
the commutation relation when we interchange the momentum and coordinate. To
reiterate: when the charge is the coordinate and the flux is the conjugate momentum,
the commutation relation is: R

(G, D] = +ih, (2.31)
whereas when the flux is the coordinate and the charge is the conjugate momentum,
the commutation relation is:

6, Q] = +ih. (2.32)

Since we have chosen a convention in which ® = ¢, we require Q = —q.



Quantum LC Oscillator 11

Just to be completely explicit, we now repeat the derivation of the Hamiltonian and
its quantization for this new choice which we will be using throughout the remainder
of these notes. Thus the Hamiltonian can be written

H=Qb L=+ & (2.33)
- e 2L° '

Hamilton’s equations of motion are then

. OH Q 9234
oQ C (.3)

. OH 10}

Q=—F7"7=——. (2.35)

Again in the usual way, the coordinate and its conjugate momentum can be pro-
moted to quantum operators obeying the canonical commutation relation (but note
the important position reversal from Eq. (2.20))

Q9] = —ih (2.36)
and we can write the Hamiltonian
hQ 1
H=— a'a+aa'l = hQ {a*mg}, (2.37)

in terms of raising and lowering operators

1 1

a=+i )+ 5 2.38
\/QChQQ \/2LhQ¢ (2:38)
1 . 1.

AT _ .
a' = —1 + 2.39
\/QCHQQ \/2Lmqj (2:39)

which obey the usual relation

[a,a'] = 1. (2.40)

The charge and flux operators can be expressed in terms of the raising and lowering
operators as

Q = —iQzpr (a —al) (2.41)
¢ = Bzpp (a+al), (2.42)

ChQ) h

Qzpr = 1/ —~ =\ 3z (2.43)
LhS) hZz

Pzpr =4/ - =\ (2.44)

where Z is the characteristic impedance of the oscillator

where
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L
Z=\\|=. 2.45
. (2.45)
Notice that the notation has been chosen such that the quantum ground state uncer-
tainties in charge and flux are given by

(0]Q%|0) = Q%pr (2.46)
(0[6%(0) = ®Fpr. (2.47)

Exercise 2.2 There is a certain arbitrariness in the choice of phase factors that enter in
definition of the raising and lowering operators in Eq. (2.42). We have chosen a convention in
which the flux is related to the real part of @ and the charge is related to the imaginary part
of &. Consider the unitary transformation U = €', where i = a'a is the photon number
operator. What does this transformation do to the Fock state |n)? How do the raising and
lowering operators transform under the action of U? What happens to the expressions for
charge and flux under the transformation of U when 0 = 7 /27

Using the superconducting resistance quantum

RQE

2oy ~ 6,453.20 Ohms, (2.48)
e

we can define a dimensionless characteristic impedance

z=Z/Rq, (2.49)

to obtain
Qurr = (26)1] — (2.50)
ZPE = N 208

[z
(0] =& — 2.50b
ZPF o 1o ( )
where
by = 1L (2.51)
07 9 ’

is the superconducting flux quantum. Notice that the usual uncertainty product is
obeyed.

h
Qzpr®zpr = 5. (2.52)
The voltage is an important physical variable and the voltage operator is given by
~de i -
V=—=-|H
=3 1H.d)
1 A hQ
= 5@="1/55 (a—a') = —iVypr (@ —a'), (2.53)

where
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[z
Vzpr = Q@zpr = QP P (2.54)
m

The superconducting flux quantum in convenient units is given by
Dy = 2.06783367 1V /GHz (2.55)

which tells us that the vacuum fluctuations of the voltage across the capacitor in a
typical 10 GHz, Z = 100 Ohm impedance resonator circuit will be on the scale of
~ (1/3)pV. Correspondingly the vacuum fluctuations of the current are on the scale
of ~ 3nA. It is remarkable that the quantum fluctuations of currents and voltages in
these microwave circuits have the same scales as are routinely measured in the audio
range with standard laboratory instruments.

How do we interpret the excitation quanta of this harmonic oscillator? We can
think of these as excitations of the collective motion of the electrons in the wire, or we
can think of them as photons of the electromagnetic field. Because this is a lumped
element resonator (as opposed to a cavity or other distributed resonator), the electric
field appears between the capacitor plates and the magnetic field appears in a separate
place, namely within the coil of the inductor. Nevertheless it is perfectly acceptable
to think of these excitations as photons. The coordinate of the oscillator is the flux in
the coil (or in the first choice we made, the charge on the capacitor plates which is
equivalent to the electric field in the gap between the plates.

One does not normally think about photons in the context of first quantization,
but this is also useful for building up intuition and for thinking about things like the
full probability distribution of electric field measurement results. The wave function
of the vacuum state is a gaussian in the coordinate ¢ as shown in Fig. (2.3)

1 o

Vo(¢) = ——5——z€ = “orr . (2.56)
27 ®Fpp]1/*

If in the vacuum state we make a precise measurement of the flux, the resulting value
will be random and have a gaussian probability distribution given by

P(¢) = [Wo(e)|*. (2.57)

Hence the most probable value of the flux is zero. On the other hand, in the one-photon
state

¢ 1 ~tal
V] = e %z
0= G 2707 pp]'/*

zero flux would never be measured because the wave function vanishes at ¢ = 0.
The measured flux is still zero on average. This is true for any (odd) photon Fock
state (number eigenstate) from simple parity considerations. On the other hand, if the

photon number is uncertain, for example in the coherent superposition state

1

U, = ﬁ (Vg + Ty), (2.59)
then the centroid of the probability distribution is displaced away from zero as shown
in Fig. (2.3) and the average value of the flux will be non-zero. A similar conclusion

(2.58)
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is readily reached within the second quantized formulation of Eq. (2.42) by noticing
that the flux and charge operators are purely off-diagonal in the photon number basis.

Fig. 2.3 LC oscillator wave function amplitude (left panel) and probability density (right
panel) plotted vs. the coordinate ¢. Solid: ground state, Uo; Long-Dashed: first excited state,
W; Short-dashed: linear combination of the ground and first excited states,%(\Ilo + 1).

Such superpositions of zero and one-photon states cannot be achieved by simply
weakly driving the oscillator as this produces a coherent superposition of all pho-
ton number states (to be described further below). However they have been achieved
experimentally (Houck et al., 2007; Hofheinz et al., 2008; Hotheinz et al., 2009) by
applying control pulses to a qubit to put it into a superposition of the ground state
|g) and the excited state |e)

‘winitial> = Oé|g> + ﬁ|€> (260)

Allowing the qubit to spontaneously decay (if it is excited) leaves the qubit in the
ground state and the electromagnetic field in a superposition of zero and one photon
with coeflicients o and 3 inherited from the qubit

[¥aina1) = |9) [@|0) + B[1)] . (2.61)

This operation maps a stationary qubit onto a ‘flying qubit’ (the photon) and is
an essential step towards communicating quantum information via photons. In the
experiment of Houck et al. (Houck et al., 2007) the photons could be sent into a
square law detector to measure the photon number, or into a homodyne detector to
measure either quadrature of the electric field (equivalent to measuring Q or gZ) in
Eq. (2.42). The experiment directly showed that the one photon Fock state had zero
electric field on average and that the phase of the electric field for superposition states
was determined by the phase imposed initially upon the qubit superposition state. We
tend to think of spontaneous emission as an incoherent process but the above results
show that this is not entirely correct. What we really mean by incoherent is that the
decay of an atom which starts purely in the excited state yields a photon state which
varies randomly from shot to shot and which vanishes only on average.

In the UCSB experiments (Hofheinz et al., 2008; Hofheinz et al., 2009), complex
superpositions of resonator Fock states were engineered and then measured via the
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their effect on the state of the qubit, rather than by homodyne measurement of the
photon state.

2.3.1 Driven LC Oscillators

Before continuing, it is useful to return to the classical circuit analysis and think about
how we should include a driving force on the oscillator. Returning to Fig. (2.2), let
us consider adding a signal source to the circuit at the node labelled ¢ as shown in
Fig. (2.4a). The first question we have to answer is whether we should use a voltage
source or a current source. Ideally, the former has zero impedance and the latter has
infinite impedance. A voltage source set to zero drive amplitude would short the ¢
node to ground and ruin the oscillator. Conversely, a current source set to zero drive
amplitude would have no effect on the oscillator at all since the voltage oscillations
would not be damped by the infinite impedance of the current source. Thus we should
use a current source which will minimize the damping. [Generically resonators will
be driven through a coupling capacitor or antenna structure connected to a ~ 50¢2
transmission lines which will introduce some damping.] For the moment we will assume
the drive is classical. (More on the meaning of classical further below.)

¢
a) b)
% C_EQ
+0

. @
L ==_g 8.0 | Q7. ()

A\ \%

Fig. 2.4 (a) Parallel LC oscillator driven at the node ¢ by a classical external current source
with infinite impedance. (b) Series LC oscillator driven at the node ¢ by a classical external
voltage source with zero impedance.

Consider the following modification of the Lagrangian in Eq. (2.29)
ﬁ—lcq's?—iqsﬂqu (2.62)
T2 2L . '

where Iy, (t) is the (classical) time-dependent bias current delivered by the source. We
can think of the third term as a Lagrange multiplier which enforces current conserva-
tion. From the Euler-Lagrange equation of motion

4oL oL

—5% + % = (2.63)
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we obtain

Q+ % = Iy(t), (2.64)
which is simply the equation for current conservation at the ¢ node. Converting the
Lagrangian to the classical Hamiltonian yields

Q> ¢
H=—+——-1(t)o, 2.65
50 + oL b(t)o (2.65)
we see that the bias current acts as a force conjugate to the coordinate ¢. We can view
the current conservation equation above as Hamilton’s equation of motion giving the
time rate of change of the momentum in terms of the sum of the oscillator spring force
plus the external force

Q= —% + In(t). (2.66)

So far we have only considered the parallel LC resonator. We turn now to the series
resonator illustrated in Fig. (2.4b). Clearly there can be no oscillations unless the node
¢ is connected to ground so that current can flow. This means that the series resonator
should be driven by a zero impedance voltage source instead of a current source. The
Lagrangian for this system is

1 _ . . P2
= 0@ — 2 - — 2.
L= 0P -, (267)
from which it follows that the Hamiltonian is
- Q2 (132
=55 T op + (1@, (2.68)

where ¢ = Vi, (t) is fixed by the bias voltage. In this case, the external control parameter
is the voltage rather than the drive current and the internal variable being controlled
is the charge rather than the flux.

Exercise 2.3 Rederive the Lagrangian and the Hamiltonian for the series resonator shown in
Fig. (2.4b) except with the capacitor and inductor interchanged so that the external voltage
source is attached to the inductor rather than the capacitor. The physics should be identical
to the previous case, but the mathematical expressions will look rather different. Can you
find a change of coordinates that maps the problem back to the previous form?

2.3.2 Coherent States

Now that we understand the classically driven quantum harmonic oscillator, we are in a
position to study coherent states of oscillation. A simple way to achieve a superposition
of different number states in a quantum oscillator is to drive it with a classical external
driving force so that the ground state is displaced and mapped to a so-called ‘coherent
state’

Wo(6) — Wal() = o(o— A)). (2.69)

Coherent states are discussed below and in further detail in Appendix E. In addition
to having coherent states displaced in position, one can also have them displaced
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in momentum. These simply correspond to being in different parts of the classical
oscillation cycle. We also discuss below what it means to have a ‘classical’ drive.

Using the Taylor series expansion to all orders we can write the unitary transfor-
mation that displaces the state as

Va(9) = e 27 Wg(9) (2.70)
= e 720y (4), (2.71)

which illustrates the fact that the momentum Q is the generator of displacements of
its conjugate coordinate ¢. The unitary displacement operator may be written as

Uy = e #2Q = gaa—al), (2.72)
where the dimensionless displacement parameter is
o= AQzpr _ A

T h 20zpp

Now using the Feynman disentangling theorem (Mahan, 2000) derived in Appendix
D, this can be normal ordered

(2.73)

U, = eted’ gmadg—slal® (2.74)

Taking advantage of the fact that a|0) = 0, we see that in second-quantized notation
the coherent state becomes T
la) = ezlol” gad’|0) (2.75)

Exercise 2.4 Since U, is unitary, it must be that («|co) = 1. Verify this by direct calculation
from Eq. (2.75).

Coherent states have some very nice properties. For example, because they are
special coherent superpositions of all possible photon numbers, they are eigenstates of
the photon destruction operator

ala) = ala). (2.76)

You can destroy a photon and still be in the same state! Curiously coherent states
are not eigenstates of al. It is clear that af|a) has no amplitude for zero photons and
hence is linearly independent of |a) (and therefore not an eigenstate). One can reach
the same conclusion by noting that @ and @' do not commute.

[a,a"]a) = |a) # 0. (2.77)
On the other hand, it is true that the mean phonon number is given by
N = (alafda) = |of? (2.78)

The phonon number distribution in a coherent state is given by the standard Poisson

distribution _
2 nN© —-N
P, = |(n|a)]” = —e™ .

— (2.79)
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Exercise 2.5 Derive Eq. (2.76) and Eq. (2.79).

Because a' is a raising operator for the energy, the coherent state has a very simple
time evolution even though it is itself not an energy eigenstate. The displacement
parameter « becomes complex and its phase increases linearly in time. That is, the
real and imaginary parts of « simply vary sinusoidally in time indicating that the
displacement alternates between position and momentum:

it 5t

la(t)) = e %a(0)) = ezl e 10). (2.80)

This corresponds in the classical limit to the circular motion in phase space of the
simple harmonic oscillator.

Rather than working with qg and Q, we will find it convenient to work with the
dimensionless quadrature amplitudes

X= % la+all (2.81)
= —zé [a—al]. (2.82)

These hermitian operators are effectively the real and imaginary parts of the a. Like
¢ and @, they are canonically conjugate with the following commutator

[X,V] = +% (2.83)
and for coherent states obey
(oz|):(|a> = Real a(t) (2.84)
(a]Y]e) = Imag a(t) (2.85)
(@|[X = (X)]*|a) = (0][AX]?|0) = i (2.86)
(@llY = (V)]’le) = (0|[AY]?|0) = i (2.87)

The last two equations show that there are quantum fluctuations in X and YV (as
there must be since they do not commute with each other). The resulting uncertainties
in the measured values of these quantities play a central in understanding quantum
noise (Clerk et al., 2010). The energy of the oscillator (in units of k) is

. N o 1
é=X2+Y2:N+§, (2.88)
so the number operator is simply
- o - 1
N=X?4+Y2- 3 (2.89)

To understand the ﬂuC‘Euations in photon number, let us consider a coherent state
with amplitude « = V. N which is real. As illustrated in Fig. (2.5), fluctuations in X
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lead to photon number fluctuations (fluctuations in the length of the phasor) while
fluctuations in Y lead to fluctuations in the phase of the coherent state as measured
in homodyne detection (Clerk et al., 2010). As we have seen, the coherent state is
nothing more than a displaced vacuum state

o) = Ua|0). (2.90)

Instead of actively displacing the physical system, we can equivalently leave the system
alone and displace the coordinate system, transforming all operators according to the
usual rule

a=UlalU, =a+ a (2.91)
al =Uld'u, =a + o (2.92)

Note that the analog of Eq. (2.76) is
a0) = |0). (2.93)

We commonly refer to « as the classical amplitude of the motion and if |a| > 1
it dominates over the quantum fluctuations around the classical value of the ampli-
tude. As mentioned earlier, weakly coupling a system to an oscillator mode in a large
amplitude coherent state produces what is effectively a classical drive with negligible
quantum fluctuations. For example we might apply a force F to an oscillator whose
coordinate is § = yzpr(b+ b') via the coupling

V =—Fy. (2.94)

For the case in which the force is supplied by linear coupling to a second ‘drive’
oscillator whose position operator is & = 2zpp(a + a'), the Hamiltonian would have
the generic form

H = wrb'b + waala + g(a + ah) (b + b). (2.95)
Changing to a frame rotating with the drive oscillator via the unitary transformation
U = etiwatala (2.96)

the Hamiltonian becomes
d PN . ) ~ ~
H, =UHU' + Ul=iz, U'l = wrb™d + g (e ™ a + e ™'al) (b+ 7).  (2.97)

If the drive oscillator is initially placed in a high amplitude coherent state it is conve-
nient to make the displacement transformation in Eq. (2.92) to obtain the transformed
coupling Hamiltonian

Hy = wrbfb+g (emwato 4 e~ ™ata*) (b+b') + Hq. (2.98)

We see in the first two terms that the system oscillator is quantum and subject to a
classical drive. The last term describes the quantum fluctuations associated with the
drive

Hq = g (e ™ata + e ™1 (b+b1). (2.99)
Because (initially at least) the drive oscillator is now in the ground state (in the new
frame), the quantum fluctuations of the drive are small compared to the classical part,
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if (in the original frame) the drive amplitude corresponds to a state with many quanta:
7 = |a|? > 1. This will continue to remain true over time provided that that the drive
strength g|a| and the detuning wq —wg are such that the number of quanta transferred
from the drive to the system via the action of Hq remains much smaller than 7.

A good example of this physics is provided by a two-port resonator with one weakly
coupled port and one strongly coupled port. The damping of the resonator will be
controlled by the port strongly coupled to the environment since most photons will
escape through that port. If the system is continuously driven at the weakly coupled
port, most photons from the drive line will be reflected, so a relatively large coherent
drive from a microwave signal generator is required to excite the resonator cavity. This
corresponds to the limit described above of small g and large « for which the classical
approximation is valid. All we require is that the power in the incoming drive wave be
mostly reflected so that it greatly exceeds the power emitted by the driven resonator
from its strongly coupled port. In the theory of parametric amplifiers, this is known
as the ‘stiff pump’ limit. No matter what the driven system does, the pump amplitude
stays fixed and essentially classical.

Exercise 2.6 Derive Egs. (2.91-2.92) by differentiating with respect to o and solving the
resulting differential equation.

Exercise 2.7 Solve the Heisenberg equation of motion for b using the Hamiltoninan in
Eq. (2.98) but neglecting the quantum fluctuation term Hgq. Show that this classical drive
applied to an oscillator initially in a coherent state (including possibly the vacuum state)
always leaves the system in a coherent state.

Exercise 2.8 Show by direct computation that for the Bose-Einstein number distribution
for a thermal photon state

((IN=NJ*)) = N(N +1). (2.100)

If you are familiar with Wick’s theorem, use that to achieve the same result.

Exercise 2.9 X? and Y? are clearly Hermitian operators with non-negative eigenvalues.
How then can you explain the fact that

(0] X?Y2|0) = 7% (2.101)

is negative? Similarly how can
0[XV10) = - 2.102
4

be complex?
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Fig. 2.5 Quantum fluctuations of amplitude and phase quadratures in a coherent state |a).
Writing the X quadrature amplitude as
X =a+ AKX, (2.103)

we see that AX has the same statistical properties in the coherent state |a) as X does
in the vacuum state. The number fluctuations are therefore given by the usual Poisson
distribution result derived above

2
([N = NPJa) = (o] [20A% + AX® + AV — % la) = N, (2.104)

Essentially the above results mean that a coherent laser or microwave beam is as
classical as possible. The fluctuations come only from the fact that the photon detection
events are discrete and the photons are sprinkled randomly throughout the beam in
an uncorrelated manner. A thermal beam has larger fluctuations because the photons
tend to bunch together (Clerk et al., 2010).

Fluctuations in the quadrature orthogonal to v cause uncertainty in a measurement
of the phase of the coherent state. For the case of a real and in the limit |a] > 1, we
have® .

Af ~ AT (2.105)

and
(al(807]a) = . (2.106)

6The ‘phase’ operator defined here does not have the angular periodicity of a phase and is only
valid for small angles.
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Thus we arrive at the fundamental number-phase uncertainty relation
s - 1
(@l(20)*a) 2 (al(AN)?[a) /2 > 3" (2.107)

Coherent states are minimum uncertainty gaussian states which satisfy this relation
as an equality. Other non-gaussian states satisfy this relation only as an inequality.

From the equation of motion of the free oscillator we see that the quadrature
amplitudes obey

X () = cos(Qt) X (0) + sin(Qt)Y (0) (2.108)
Y (t) = cos(Qt)Y (0) — sin(Qt) X (0) (2.109)

In Appendix B we study photons traveling in transmission lines and we again find that
the traveling modes are also harmonic oscillators. The above results provide the first
hint that the sin Q¢ and cos 2t quadratures of a quantum electrical signal are canoni-
cally conjugate and hence cannot be simultaneously measured with perfect accuracy.
Equivalently even the vacuum contains noise which will appear in any measurement
in which one attempts to measure both quadratures of the signal. Eq. (2.87) tells us
that this uncertainty gives a vacuum ‘noise energy’ (noise power per unit measurement
bandwidth) of half a photon (Clerk et al., 2010).

Exercise 2.10 Think through the above statement about noise energy at the classical level.
Consider a noise source which is white (i.e., with constant spectral density S) over some large
interval. Passing this noise through a filter which transmits a small bandwidth B centered
on frequency w will yield a power of P = SB. The wider the bandpass the more power. Thus
we see that the spectral density is power per unit bandwidth which has units of energy. For a
quantum thermal source feeding a photomultiplier (which measures a'é), this is S = AN and
we say that ‘the noise energy is N photons.” A photomultiplier feed by vacuum noise has zero
output. However listening to the vacuum noise power through a phase preserving amplifier
or (equivalently) using a heterodyne detector which measures the power in the quadrature

amplitudes (X2 + V?2) = 1 yields a noise energy of half a photon (Clerk et al., 2010).

2.4 Coupled LC Resonators

Having thoroughly analyzed the simple LC oscillator, it is a useful exercise to consider
how to quantize a pair of LC oscillators connected by a coupling capacitor as shown
in Fig. (2.6). This will teach us how to handle slightly more complex circuits and will
set the stage for understanding the coupling of a qubit to a microwave resonator.
Choosing the fluxes ®; and ®, as the coordinates of the two oscillators, the La-
grangian can be written
L= %Cﬂb% —+ %Czcbg =+ %Cg[@l — @2]2 — %qu)% —

1

H2 2.110
2L2 2 ( )

It is convenient to use a matrix notation

1. . 1
£§¢C<I> - 5<I>L*1a1>, (2.111)
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Fig. 2.6 A pair of LC oscillators connected by coupling capacitor Cp.

where the capacitance matrix is

c

<CI+CO —Co ) (2.112)

—Cy Cy+Cy

and the inverse inductance matrix is

0
L t= (Lol L) . (2.113)
Lo

At this point there are two ways to proceed, which are described below.

METHOD I: FIND THE HAMILTONIAN, THEN DIAGONALIZE. In the first
method we will use the given coordinates to find the canonical momenta and from
there construct the Hamiltonian which will contain a coupling between the two oscil-
lators.
The canonical momenta are given by
oL .

Q=S =0y, (2.114)
where we employ the Einstein summation convention for repeated indices. In terms of
the inverse of the capacitance matrix we have

d=C71Q. (2.115)

The Hamiltonian H = Q,-(i%- — L now takes the canonical form
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1 1
H= 5@0*@ + 5<1>L—1<I>. (2.116)

The inverse of the capacitance matrix is

_ 1 Cy+Cy +C
c = 2.117
C1Cy + CyCq + CyCs ( +Cy Ci+ CO> ( )
It is useful to define two frequencies and a coupling constant:
1
2 __ -1
wi==1. (Ca P (2.118)
and c
B= o : (2.119)
\/(01 + ¢0)(C2 + Co)
which yields
_ Liw? +ﬁ\/L—L2w1w2>
ol = Lt} 2.120
(5\/ Ly Lowwe Low3 ( )

We can now write the Hamiltonian H = Hy + V in terms of two oscillators with
masses L; and coupled through their momenta

1
Hy = L1w1Q1 T+ L2w1Q2 3 (2.121)
V =0y Lngwlngng. (2.122)

We quantize as usual by converting to operators with the canonical commutation
relation

(Qi, @] = —ihdy;. (2.123)

Defining creation and annihilation operators in the usual way we have
2
ta 1
=3 hw (ajaj - §> (2.124)
j=1
V = —Bhy/arwz(ay — al)(ay — al), (2.125)
which can be diagonalized via a Bogoljubov transformation.
Exercise 2.11 Find the Bogoljubov transformation which diagonalizes Ho+V defined above.
METHOD II: DIAGONALIZE THE LAGRANGIAN, THEN THE HAMILTONIAN.
The first method used the original coordinates and found their canonical momenta
and from there constructed the (non-diagonal) Hamiltonian. In the second method,

we will find the normal mode coordinates which diagonalize the Lagrangian. In terms
of these, the Hamiltonian will be automatically diagonal.
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When we try to diagonalize the Lagrangian in Eq. (2.111), we are faced with the
problem that the capacitance and inductance matrices do not commute and hence
cannot be simultaneously diagonalized by a unitary transformation. We can cure this
problem by making a similarity transformation which maps L~ to the identity matrix.
We simply choose scaled coordinates

by = —=9;. (2.126)

In terms of these the Lagrangian becomes

1. ; 1
L= gwiAiﬂ/)j — 5%5@'%‘ (2.127)
where
1 _ B
A= (_Qlﬁ e ) (2.128)
o 02
where we define frequencies (different from the previous method)
1
o = La(C1 + C) (2.129)
1
1
ﬁ = LQ(CQ + C()) (2130)
2

Since A commutes with the identity matrix, we can now proceed as usual to per-
form a rotation among the coordinates to diagonalize the Lagrangian. Let S be the
orthogonal transformation that diagonalizes A. The normal modes and eigenvalues are
then given by

b =Sy (2.131)

_ 40
A= (%1 X ) = 5AS". (2.132)

Exercise 2.12 Find the normal modes and eigenfrequencies above. Hint: Write A = A +
Zo? + Xo® and think of it as a spin problem which has eigenvalues

ex = A+ /X2 4 22 (2.133)

and eigenfunctions which follow from

[ +cos? +sind
5= (—sing +cos§)’ (2.134)

where tanf = X/Z.
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2.5 Modes of Transmission Lines Resonators

The above lengthy discussion of the simple harmonic oscillator has laid the very impor-
tant groundwork for our next topic which is the quantum modes of transmission lines.
We will start with finite length transmission lines which have discrete electromagnetic
resonances, each of which will turn out to be an independent simple harmonic oscil-
lator. Then we will move on to the semi-infinite transmission line and discover that
it can act like a dissipative bath even though every one of its electrical elements is
non-dissipative.

Our finite length transmission line could be a length of ordinary coaxial cable or its
2D equivalent, the coplanar waveguide (CPW), which consists of a superconducting
wire evaporated on an insulating substrate and having superconducting ground planes
adjacent to it on the same surface as shown in Fig. (2.7). Such a system exhibits
many standing wave resonances and we will soon see that each resonance is an inde-
pendent harmonic oscillator equivalent to the simple LC oscillator just discussed. The
discretized equivalent circuit for the CPW resonator is also shown in Fig. (2.7). In our
initial analysis we will neglect the presence of the qubit and neglect the capacitors Cy
at each end which couple the resonator to the external transmission lines. We can thus
assume in this first example open-circuit boundary conditions for which the current
(but not the voltage) vanishes at the ends of the resonator.

>Z

Fig. 2.7 Schematic illustration of a typical coplanar waveguide (CPW) resonator used in
circuit QED together with its discretized lumped-element equivalent circuit. The qubit lies
between the center pin and the adjacent ground plane and is located at an antinode of the
electric field, shown in this case for the full-wave resonance of the CPW. From (Blais et al.,
2004).

It is convenient to define a flux variable analogous to that used above but now
dependent on position (Devoret, 1997)
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D(x,t) = /_t drV(x, 1), (2.135)

where V(z,t) = 0;®(x,t) is the local voltage on the transmission line at position x
and time ¢. The inductance and capacitance per unit length are ¢ and c respectively.
Each segment of the line of length dx has inductance ¢ dx and the voltage drop along
it is —dx 0,0;®(x,t). The flux through this inductance is thus —dx 0, ®(x,t) and the
local value of the current is given by the constitutive equation

I(a,t) = f% 0,D(, 1), (2.136)

The Lagrangian for a system of length L (L is not to be confused with some discrete
inductance)

L L
g 1
L, = / do L(z, 1) = / iz | S (0,02 — L (0,002, (2.137)
7=, 0 2 20
The Euler-Lagrange equation for this Lagrangian is simply the wave equation
V2070 — 07 = 0. (2.138)

The momentum conjugate to ®(z) is simply the charge density

q(z,t) = % =cO® = cV(z,t) (2.139)

and so the Hamiltonian is given by

H—/Ldm L 2+i(6 P)? (2.140)
o 2c1 T 0\ ' '

Let us next proceed to consider the classical normal mode solutions of Eq. (2.138).
If we assume a sinusoidal time-dependence with angular frequency w,

O(xz,t) = e “ip(z), (2.141)
we arrive at the Schrodinger like eigenvalue problem
—o(x) = K¢ (), (2.142)

where £ = w/v, and the mode wave velocity is v, = \/_12_(;' The open-circuit (zero-
current) boundary conditions tell us that the eigenfunctions have vanishing derivative
at the boundaries. We choose a particular normalization for eigenfunctions which will

keep the equations looking as close to those of the single harmonic oscillator as possible
bn(x) = V2cos(kn), (2.143)

where n¢€{0,1,2,3,...}, k, = 5. Because for these boundary conditions the operator
9?2 is self-adjoint, and because the eigenvalues are non-degenerate, the eigenfunctions
have two helpful properties
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/0 dx ¢n ()i () = Loym (2.144)

L
/0 d [0 (2))[0n S (€)] = Lk Grm.- (2.145)

From this it follows that the Lagrangian can be diagonalized using these (spatial)
normal modes as a basis. Let us parameterize the field ®(z,t) by

O(x,t) = Y &nlt)n(2), (2.146)

where the &, are arbitrary (i.e. not necessarily sinusoidal) functions of time. Substi-
tuting into the Eq. (2.137) and using Eqs. (2.144-2.145)

oo

Ly = 5Led D6 ~ w262 (2.147)

n=0
we see that each normal mode becomes an independent simple harmonic oscillator.
The momentum conjugate to the normal mode amplitude &, is

oL
Gn = 58t§n = LcOién, (2.148)
so the Hamiltonian is
1N (1
H==: ¢ + Lew?&? 2.14
5 n§:0 { Todn T cwnfn} : (2.149)

which we can quantize as before. Before doing so, let us note that the n = 0 mode is a
‘free particle’ rather than a harmonic oscillator because its spring constant vanishes.
This mode simply corresponds to a uniform net charge distributed evenly along the
transmission line. For a free particle the momentum (in this case charge) is a constant
and the coordinate (flux) increases linearly with time. In most situations the total
charge is indeed simply a constant of the motion (and typically vanishes) and we can
ignore the zero mode altogether. We will assume this is the case henceforth.

We end up with a set of independent normal modes with coordinate &, and conju-
gate momentum ¢, which when quantized can be expressed in terms of mode raising
and lowering operators in a manner analogous to Eq. (2.42)

Ry (@ + af) (2.150)

I
Gn = —i\/%(an —at) (2.151)

where the ladder operators of the different modes obey
[, @] = G- (2.152)

Note that, just as in the single mode case in Eq. (2.42), there is a certain arbitrariness
in the choice of the phase of the destruction operators (which can be independently
varied for each separate mode).
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If we are coupling a qubit to a resonator at some particular position z, we need to
be able to express the flux and charge density operators at that point in terms of the
normal mode operators. Eq. (2.146) is readily extended to the quantum operators

de 2)én, (2.153)

as is Eq. (2.139) ~
j(z) = %Z D () G- (2.154)

Similarly, the analog of Eq. (2.53) for the voltage operator at point x is given by

V(w):% Z% ,ﬁ—zZ\/QLZ D) (). (2.155)

The total capacitance to ground of the resonator, Le¢, enters this expression in a way
that is similar to lumped element oscillator expression in Eq. (2.53). (Recall that L is
the length of the resonator, not the inductance.)

Notice that the flux and charge density operators obey the following commutation
relation

[4(x), d(a")] = —ih— Z% (). (2.156)

Using the completeness relation (and recalhng that the factor of L appears because
we did not normalize the eigenfunctions to unity) we end up with the standard field
theoretic relation

[4(z), ®(x)] = —ihd(z — 2). (2.157)
Expressing the quantum Hamiltonian in Eq. (2.140) in terms of these operators, we
have simply
. L 1,
H= d —q Oy P 2.158
[ e { s go.dr ). (2.158)

As a ‘sanity check’ let us look at the Hamilton equations of motion. Using commutation
relation in Eq. (2.157) and its extension to

[G(x"), 0.®(x)] = —ihdyd(x — ). (2.159)
we arrive at
- [ARPSEA 1
0 ®(y) = £[H, 2(y)] = —d(y) (2.160)
. T a 1,52
%d(y) = £1H,a(v)] = 70;2(y). (2.161)
and hence the quantum version of the wave equation in Eq. (2.138)
V2020 (z) — 97 P (x) = 0. (2.162)

When we studied coherent states of a single oscillator we found that they were
simply the vacuum state displaced in either position (flux) and/or momentum (charge).
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For a multi-mode resonator one can coherently displace a linear combination of the
of the normal modes. The familiar problem of solving the time evolution of a plucked
string is a good classical analog. Suppose that we wish to displace the resonator degrees
of freedom so that the local displacement obeys

(b)) = Aw), (2.163)
where A is some specified function. The analog of Eq. (2.72) is simply
Upr=e # Jo dz A(a)i(e) (2.164)

a form which is familiar from the theory of the Luttinger liquid (Kane and Fisher,
19920; Kane and Fisher, 1992q). Using Eq. (2.154) this can be understood in terms of
coherent displacement of each of the normal modes

Un = e 2w bntn T em i, (2.165)

Exercise 2.13 In analogy with Egs. (2.91-2.92) show that
UL®(y)Ua = B(y) + Ay). (2.166)

Hint: It may be useful to scale A(z) by an overall factor 6 and differentiate with respect to
0.

2.6 ‘Black Box’ Quantization of Linear Circuits

We have so far studied a single LC oscillator and found that its quantum excitation
energy h{) is given directly by its classical frequency Q. We also found in Eq. (2.50)
that the characteristic impedance Z = /L/C determines the size of the zero-point
fluctuations in flux and charge. The typical circuit that we will study is more complex
than a single LC oscillator and might even be a ‘black box’ whose properties we need
to determine. Suppose that we have such a black box and we have access to one port
of this structure as shown in Fig. (2.8a). The only thing we know (or assume) is that
all the elements inside the black box are linear and purely reactive; i.e., the black box
is a network of inductors and capacitors. It might for example be a transmission line
resonator such as we studied above. We may ultimately want to connect a qubit or
some measurement apparatus to the port of the black box. In order to predict the
quantum properties we need to know each of the normal modes of the box and the
size of their zero-point fluctuations as seen at the port. Some modes may be localized
inside the box and have very little amplitude at the port. Others may be more strongly
coupled to the port.

Since the black box is linear, we can probe it by applying a sinusoidal drive and
measuring the response. The are two ways to do this. First, one can hook up a current
source which forces current

I(t) = i[w]e?t + i*[w]e 7t (2.167)
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Fig. 2.8 a) One-port black box containing an arbitrary reactive network. b) Lumped element
LC resonator. c¢) Imaginary part of the admittance of the LC resonator in (b) vs. dimension-
less frequency showing that the admittance passes through zero with positive slope at the
resonance frequency. d) Imaginary part of the admittance of a multi-resonance circuit with a
capacitor in the input line similar to (a). Notice that the slope of the admittance at each of
the zeros is different, corresponding to different characteristic impedances of the resonances.

through the circuit.” The linear response of the circuit is determined by measuring the
resulting voltage at the input port

V(t) = vw]ed + v*w]e I (2.168)

The linear response coefficient that relates the voltage response to the drive current is
known as the impedance

v[w] = Z[w]iw]. (2.169)

Because the box contains only reactive elements (assumed finite in number) the impedance
is purely imaginary. The poles of Z[w] determine the eigenfrequencies of the circuit
for which natural oscillations can occur without external input (when the input port
is open circuited). Note that this is consistent with the fact that an ideal current

"To avoid confusion with the current i we follow the electrical engineering convention of using
j = —+/—1. In addition to avoid confusion between some function of time and its Fourier transform,
we will use the convention that Fourier transformed quantities have the frequency argument in square
brackets.
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source has infinite internal impedance and hence drives the circuit while effectively
keeping the input port open-circuited. The circuit presented in Fig. (2.9a) is a natural
representation of an arbitrary frequency-dependent impedance®. It is important to un-
derstand that in general, the circuit elements used in this mathematical representation
have no direct correspondence with any of the physical elements in the actual circuit.
Note that if there is a pole in the impedance at zero frequency, it corresponds to the
‘free-particle’ Hamiltonian of a capacitor, H = % in series with the input (not shown
in Fig. (2.9a).

b) L L, L Ly

/= G C T

C1|

Fig. 2.9 a) Natural representation of an arbitrary impedance (assuming for simplicity that
the impedance vanishes at zero frequency). The jth pole of the impedance occurs at the
frequency of the jth collective mode w; = 1/\/m and can be detected by using an in-
finite-impedance current source to inject RF current into the input port and measuring the
resulting RF voltage across across the port. b) Natural representation of an arbitrary admit-
tance (assuming for simplicity that the admittance vanishes at zero frequency). The poles of
the admittance determine the natural oscillation frequencies of the circuit when its input is
shorted. These can be detected by using a zero-impedance RF voltage source to put a drive
voltage across the input port and measuring the resulting RF current that flows into the port.

8Note that this particular representation has the property that there is a dc connection through
all the inductors to ground. Hence the impedance vanishes at zero frequency. If this is not the case for
the physical circuit, then we must include a series capacitor in the input line. This would be necessary
for example to represent the impedance of the circuit shown in Fig. (2.8a).
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The second way to measure the linear response is to attach a zero-impedance
voltage source to the input and measure the resulting current response. The linear
response coefficient that relates the current response to the voltage drive is known as
the admittance

i[w] = Yw]v[w] (2.170)

which is simply the inverse of the impedance
Yw] = Z7 w]. (2.171)

The circuit presented in Fig. (2.9b) is a natural representation of an arbitrary frequency-
dependent admittance. The poles of the admittance determine the natural oscillation
frequencies of the circuit when its input port is short-circuited. Again, this is consistent
with the excitation of these modes, this time using a zero-impedance voltage source.
To reiterate, the poles of the admittance (zeros of the impedance) correspond to ef-
fective series LC resonances which would occur if the input port were short-circuited.
These can be important but for the particular case where nothing is hooked up to the
external port, these poles do not correspond to active degrees of freedom. An inductor
and capacitor in series cannot oscillate on their own at non-zero frequencies unless the
circuit is closed at the input port. Finally, we note that according to Foster’s theorem
(Foster, 1924), the (imaginary) admittance of a reactive circuit always passes through
zero with positive slope so therefore each zero must be separated from the next by a
pole as shown in Fig. (2.8d).

Physically, poles of response functions are the most natural thing to consider. How-
ever in numerical simulations, zeros are sometimes mathematically easier for a com-
puter to handle than poles. Hence it can be convenient to work with the impedance
representation in Fig. (2.9a) but numerically ascertain the zero-crossings of the admit-
tance rather than the poles of the impedance.

As an example, suppose that the black box contains a single parallel LC oscillator
as shown in Fig. (2.8b). Then the admittance is simply

. 1 +7 [ w WR
Vil = iwC _ Lo er 2.172
Wl =5wC+ 2T = Z <wR w ) ’ (2172)
where Zy = 4/ é is the characteristic impedance of the resonance. Note that this

is indeed purely imaginary and further that it passes through zero at the resonance
frequency Q = \/%—C as shown in Fig. (2.8¢). The admittance is zero because the
inductor and capacitor have opposite admittances at the resonance frequency. But
this is precisely the condition for self-sustaining oscillation where the currents in the
inductor and capacitor are opposite to each other and no external input is needed.

It turns out that knowing the admittance (or impedance) of the box port as a
function of frequency completely characterizes the classical and the quantum properties
of the black box, as long as it contains only linear elements(Manucharyan et al., 2007).
We have already seen a hint of this in Eqs. (2.43-2.44) where we learned that the
characteristic impedance of a resonance determines the zero-point fluctuations of the
charge and flux degrees of freedom. Of course, knowing the frequency of an oscillator
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we can immediately write down the quantum Hamiltonian (neglecting the zero-point

energy)
Hy = hQa'a. (2.173)

This is not enough however. If we couple an external circuit to our black box we
need to know the matrix elements of the coupling Hamiltonian. For this we need
to know how to express the charge and flux in terms of a and a' and hence must
know the characteristic impedance of the resonance. Happily, the slope with which
the admittance passes through zero determines the characteristic impedance of the

resonance
oY 2j
Q(— = — 2.174
( Oow ) o 2o 7 ( )
so that
2j
Zy = —=—. (2.175)
(3 )q

Using Egs. (2.43-2.44) we can then find any physical quantity we desire.

To see the generality of this result, consider the example of the lumped element
circuit in Fig. (2.10). If Ly + Lo = L then this has the same bare resonance frequency
Q but clearly will have a different coupling to the port. Use of Eq. (2.44) yields

ML [ Ly \°
o2 = 2.1
e =5 (707 ) (2176)

which is just what we expect from the transformer turns ratio.

Fig. 2.10 Single port black box containing a simple LC oscillator with the port connected
to an inductive divider with L; + L = L.

Let us suppose for example that we couple to our black box through an inductor
L. as shown in Fig. (2.11). The coupling Hamiltonian is
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Hy = zic (<i> - ci)in)2. (2.177)

The operator d;,, is either a classical control field or is a quantum operator for whatever
system we hook up to our black box. Now that we know impedance of the resonance,
we know how to express ® using Eq. (2.44) so that we have

H, = L (q)ZPF(d + &T) — qA)in)Q . (2178)
2L,

The case of capacitive rather than inductive coupling is more complex as can be
seen from the example of two capacitively coupled oscillators shown in Fig. (2.6) which
we discussed earlier. We found that it was easy to write down the Lagrangian, but
finding the Hamiltonian required inverting the capacitance matrix for the entire sys-
tem. Hence if we are going to use the flux variable at the input port as the coordinate,
it is usually easiest to proceed by treating the coupling capacitor as being inside the
black box.

Fig. 2.11 Coupling to a blackbox via an inductor.

The extension of these results to the case of a multi-mode black box Hamiltonian
is simply
Hy =Y Qumal,am, (2.179)

where the summation is over the different modes and the flux operator at the port of
the black box is simply

b =" o5 (am +al,) . (2.180)

This is simply a statement that the voltage across the input port is the sum of the
voltages across each of the resonator elements in series as shown in Fig. (2.9a).
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This ‘black box’ formalism will prove useful if it is possible to either measure, or
use finite element simulations to compute, the admittance as a function of frequency.
So far we have only discussed quantization of linear circuits which are equivalent to
coupled simple harmonic oscillators. Qubits are of course not linear circuit elements,
but the formalism developed here is especially useful for the study of transmon qubits
coupled to resonators since as we will see in Chap. (4), the transmon qubit is essentially
a weakly anharmonic oscillator. The generalization of the discussion above to the
coupling of a weakly anharmonic oscillator to a linear black box (Manucharyan et al.,
2007) is discussed in detail in Appendix C. The reader should familiarize herself with
the discussion of the transmon qubit in Chap. (4) before studying Appendix C.



